Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(50): 17379-17387, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36490367

RESUMO

The pandemic readiness toolbox needs to be extended, targeting different biomolecules, using orthogonal experimental set-ups. Here, we build on our Cov-MS effort using LC-MS, adding SISCAPA technology to enrich proteotypic peptides of the SARS-CoV-2 nucleocapsid (N) protein from trypsin-digested patient samples. The Cov2MS assay is compatible with most matrices including nasopharyngeal swabs, saliva, and plasma and has increased sensitivity into the attomole range, a 1000-fold improvement compared to direct detection in a matrix. A strong positive correlation was observed with qPCR detection beyond a quantification cycle of 30-31, the level where no live virus can be cultured. The automatable sample preparation and reduced LC dependency allow analysis of up to 500 samples per day per instrument. Importantly, peptide enrichment allows detection of the N protein in pooled samples without sensitivity loss. Easily multiplexed, we detect variants and propose targets for Influenza A and B detection. Thus, the Cov2MS assay can be adapted to test for many different pathogens in pooled samples, providing longitudinal epidemiological monitoring of large numbers of pathogens within a population as an early warning system.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Espectrometria de Massas/métodos , Peptídeos , Sensibilidade e Especificidade
2.
Adv Sci (Weinh) ; : e2203880, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414384

RESUMO

Biomaterials can control cell and nuclear morphology. Since the shape of the nucleus influences chromatin architecture, gene expression and cell identity, surface topography can control cell phenotype. This study provides fundamental insights into how surface topography influences nuclear morphology, histone modifications, and expression of histone-associated proteins through advanced histone mass spectrometry and microarray analysis. The authors find that nuclear confinement is associated with a loss of histone acetylation and nucleoli abundance, while pathway analysis reveals a substantial reduction in gene expression associated with chromosome organization. In light of previous observations where the authors found a decrease in proliferation and metabolism induced by micro-topographies, they connect these findings with a quiescent phenotype in mesenchymal stem cells, as further shown by a reduction of ribosomal proteins and the maintenance of multipotency on micro-topographies after long-term culture conditions. Also, this influence of micro-topographies on nuclear morphology and proliferation is reversible, as shown by a return of proliferation when re-cultured on a flat surface. The findings provide novel insights into how biophysical signaling influences the epigenetic landscape and subsequent cellular phenotype.

3.
Sci Data ; 9(1): 626, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243775

RESUMO

The holistic nature of omics studies makes them ideally suited to generate hypotheses on health and disease. Sequencing-based genomics and mass spectrometry (MS)-based proteomics are linked through epigenetic regulation mechanisms. However, epigenomics is currently mainly focused on DNA methylation status using sequencing technologies, while studying histone posttranslational modifications (hPTMs) using MS is lagging, partly because reuse of raw data is impractical. Yet, targeting hPTMs using epidrugs is an established promising research avenue in cancer treatment. Therefore, we here present the most comprehensive MS-based preprocessed hPTM atlas to date, including 21 T-cell acute lymphoblastic leukemia (T-ALL) cell lines. We present the data in an intuitive and browsable single licensed Progenesis QIP project and provide all essential quality metrics, allowing users to assess the quality of the data, edit individual peptides, try novel annotation algorithms and export both peptide and protein data for downstream analyses, exemplified by the PeptidoformViz tool. This data resource sets the stage for generalizing MS-based histone analysis and provides the first reusable histone dataset for epidrug development.


Assuntos
Histonas , Leucemia , Humanos , Epigênese Genética , Histonas/metabolismo , Espectrometria de Massas/métodos , Peptídeos/química , Processamento de Proteína Pós-Traducional , Linfócitos T/química , Leucemia-Linfoma Linfoblástico de Células T Precursoras
4.
Sci Data ; 9(1): 126, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354825

RESUMO

In the last decade, a revolution in liquid chromatography-mass spectrometry (LC-MS) based proteomics was unfolded with the introduction of dozens of novel instruments that incorporate additional data dimensions through innovative acquisition methodologies, in turn inspiring specialized data analysis pipelines. Simultaneously, a growing number of proteomics datasets have been made publicly available through data repositories such as ProteomeXchange, Zenodo and Skyline Panorama. However, developing algorithms to mine this data and assessing the performance on different platforms is currently hampered by the lack of a single benchmark experimental design. Therefore, we acquired a hybrid proteome mixture on different instrument platforms and in all currently available families of data acquisition. Here, we present a comprehensive Data-Dependent and Data-Independent Acquisition (DDA/DIA) dataset acquired using several of the most commonly used current day instrumental platforms. The dataset consists of over 700 LC-MS runs, including adequate replicates allowing robust statistics and covering over nearly 10 different data formats, including scanning quadrupole and ion mobility enabled acquisitions. Datasets are available via ProteomeXchange (PXD028735).


Assuntos
Benchmarking , Proteômica , Animais , Cromatografia Líquida/métodos , Humanos , Espectrometria de Massas/métodos , Proteoma
5.
Sci Rep ; 12(1): 1256, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075221

RESUMO

Toxicoepigenetics is an emerging field that studies the toxicological impact of compounds on protein expression through heritable, non-genetic mechanisms, such as histone post-translational modifications (hPTMs). Due to substantial progress in the large-scale study of hPTMs, integration into the field of toxicology is promising and offers the opportunity to gain novel insights into toxicological phenomena. Moreover, there is a growing demand for high-throughput human-based in vitro assays for toxicity testing, especially for developmental toxicity. Consequently, we developed a mass spectrometry-based proof-of-concept to assess a histone code screening assay capable of simultaneously detecting multiple hPTM-changes in human embryonic stem cells. We first validated the untargeted workflow with valproic acid (VPA), a histone deacetylase inhibitor. These results demonstrate the capability of mapping the hPTM-dynamics, with a general increase in acetylations as an internal control. To illustrate the scalability, a dose-response study was performed on a proof-of-concept library of ten compounds (1) with a known effect on the hPTMs (BIX-01294, 3-Deazaneplanocin A, Trichostatin A, and VPA), (2) classified as highly embryotoxic by the European Centre for the Validation of Alternative Methods (ECVAM) (Methotrexate, and All-trans retinoic acid), (3) classified as non-embryotoxic by ECVAM (Penicillin G), and (4) compounds of abuse with a presumed developmental toxicity (ethanol, caffeine, and nicotine).


Assuntos
Código das Histonas , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Teratogênicos/análise , Testes de Toxicidade/métodos , Humanos , Estudo de Prova de Conceito
6.
Elife ; 102021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34889738

RESUMO

A new protocol step improves robustness and ease-of-use for mass spectrometry in the clinic, opening the door to mass deployment to monitor infectious agents.


Assuntos
COVID-19 , Pandemias , Humanos , Espectrometria de Massas , Proteômica , SARS-CoV-2
7.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830117

RESUMO

Disease relapse and therapy resistance remain key challenges in treating multiple myeloma. Underlying (epi-)mutational events can promote myelomagenesis and contribute to multi-drug and apoptosis resistance. Therefore, compounds inducing ferroptosis, a form of iron and lipid peroxidation-regulated cell death, are appealing alternative treatment strategies for multiple myeloma and other malignancies. Both ferroptosis and the epigenetic machinery are heavily influenced by oxidative stress and iron metabolism changes. Yet, only a limited number of epigenetic enzymes and modifications have been identified as ferroptosis regulators. In this study, we found that MM1 multiple myeloma cells are sensitive to ferroptosis induction and epigenetic reprogramming by RSL3, irrespective of their glucocorticoid-sensitivity status. LC-MS/MS analysis revealed the formation of non-heme iron-histone complexes and altered expression of histone modifications associated with DNA repair and cellular senescence. In line with this observation, EPIC BeadChip measurements of significant DNA methylation changes in ferroptotic myeloma cells demonstrated an enrichment of CpG probes located in genes associated with cell cycle progression and senescence, such as Nuclear Receptor Subfamily 4 Group A member 2 (NR4A2). Overall, our data show that ferroptotic cell death is associated with an epigenomic stress response that might advance the therapeutic applicability of ferroptotic compounds.


Assuntos
Senescência Celular , Metilação de DNA , DNA de Neoplasias/metabolismo , Ferroptose , Histonas/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Código das Histonas , Humanos , Mieloma Múltiplo/patologia
8.
Mol Omics ; 17(6): 929-938, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34522942

RESUMO

Histone-based chromatin organization paved the way for eukaryotic genome complexity. Because of their key role in information management, the histone posttranslational modifications (hPTM), which mediate their function, have evolved into an alphabet that has more letters than there are amino acids, together making up the "histone code". The resulting combinatorial complexity is manifold higher than what is usually encountered in proteomics. Consequently, a considerably bigger part of the acquired MSMS spectra remains unannotated to date. Adapted search parameters can dig deeper into the dark histone ion space, but the lack of false discovery rate (FDR) control and the high level of ambiguity when searching combinatorial PTMs makes it very hard to assess whether the newly assigned ions are informative. Therefore, we propose an easily adoptable time-lapse enzymatic deacetylation (HDAC1) of a commercial histone extract as a quantify-first strategy that allows isolating ion populations of interest, when studying e.g. acetylation on histones, that currently remain in the dark. By adapting search parameters to study potential issues in sample preparation, data acquisition and data analysis, we stepwise managed to double the portion of annotated precursors of interest from 10.5% to 21.6%. This strategy is intended to make up for the lack of validated FDR control and has led to several adaptations of our current workflow that will reduce the portion of the dark histone ion space in the future. Finally, this strategy can be applied with any enzyme targeting a modification of interest.


Assuntos
Histonas , Projetos de Pesquisa , Código das Histonas , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica
9.
JACS Au ; 1(6): 750-765, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254058

RESUMO

Rising population density and global mobility are among the reasons why pathogens such as SARS-CoV-2, the virus that causes COVID-19, spread so rapidly across the globe. The policy response to such pandemics will always have to include accurate monitoring of the spread, as this provides one of the few alternatives to total lockdown. However, COVID-19 diagnosis is currently performed almost exclusively by reverse transcription polymerase chain reaction (RT-PCR). Although this is efficient, automatable, and acceptably cheap, reliance on one type of technology comes with serious caveats, as illustrated by recurring reagent and test shortages. We therefore developed an alternative diagnostic test that detects proteolytically digested SARS-CoV-2 proteins using mass spectrometry (MS). We established the Cov-MS consortium, consisting of 15 academic laboratories and several industrial partners to increase applicability, accessibility, sensitivity, and robustness of this kind of SARS-CoV-2 detection. This, in turn, gave rise to the Cov-MS Digital Incubator that allows other laboratories to join the effort, navigate, and share their optimizations and translate the assay into their clinic. As this test relies on viral proteins instead of RNA, it provides an orthogonal and complementary approach to RT-PCR using other reagents that are relatively inexpensive and widely available, as well as orthogonally skilled personnel and different instruments. Data are available via ProteomeXchange with identifier PXD022550.

10.
J Proteome Res ; 20(6): 3388-3394, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33970638

RESUMO

Here, we present the Universal Spectrum Explorer (USE), a web-based tool based on IPSA for cross-resource (peptide) spectrum visualization and comparison (https://www.proteomicsdb.org/use/). Mass spectra under investigation can be either provided manually by the user (table format) or automatically retrieved from online repositories supporting access to spectral data via the universal spectrum identifier (USI), or requested from other resources and services implementing a newly designed REST interface. As a proof of principle, we implemented such an interface in ProteomicsDB thereby allowing the retrieval of spectra acquired within the ProteomeTools project or real-time prediction of tandem mass spectra from the deep learning framework Prosit. Annotated mirror spectrum plots can be exported from the USE as editable scalable high-quality vector graphics. The USE was designed and implemented with minimal external dependencies allowing local usage and integration into other web sites (https://github.com/kusterlab/universal_spectrum_explorer).


Assuntos
Software , Espectrometria de Massas em Tandem , Internet , Peptídeos
11.
Proteomes ; 9(2)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919160

RESUMO

Histone-based chromatin organization enabled eukaryotic genome complexity. This epigenetic control mechanism allowed for the differentiation of stable gene-expression and thus the very existence of multicellular organisms. This existential role in biology makes histones one of the most complexly modified molecules in the biotic world, which makes these key regulators notoriously hard to analyze. We here provide a roadmap to enable fast and informed selection of a bottom-up mass spectrometry sample preparation protocol that matches a specific research question. We therefore propose a two-step assessment procedure: (i) visualization of the coverage that is attained for a given workflow and (ii) direct alignment between runs to assess potential pitfalls at the ion level. To illustrate the applicability, we compare four different sample preparation protocols while adding a new enzyme to the toolbox, i.e., RgpB (GingisREX®, Genovis, Lund, Sweden), an endoproteinase that selectively and efficiently cleaves at the c-terminal end of arginine residues. Raw data are available via ProteomeXchange with identifier PXD024423.

12.
MethodsX ; 7: 101055, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995308

RESUMO

Evidence of the involvement of epigenetics in pathologies such as cancer, diabetes, and neurodegeneration has increased global interest in epigenetic modifications. For nearly thirty years, it has been known that cancer cells exhibit abnormal DNA methylation patterns. In contrast, the large-scale analysis of histone post-translational modifications (hPTMs) has lagged behind because classically, histone modification analysis has relied on site specific antibody-based techniques. Mass spectrometry (MS) is a technique that holds the promise to picture the histone code comprehensively in a single experiment. Therefore, we developed an MS-based method that is capable of tracking all possible hPTMs in an untargeted approach. In this way, trends in single and combinatorial hPTMs can be reported and enable prediction of the epigenetic toxicity of compounds. Moreover, this method is based on the use of human cells to provide preliminary data, thereby omitting the need to sacrifice laboratory animals. Improving the workflow and the user-friendliness in order to become a high throughput, easily applicable, toxicological screening assay is an ongoing effort. Still, this novel toxicoepigenetic assay and the data it generates holds great potential for, among others, pharmaceutical industry, food science, clinical diagnostics and, environmental toxicity screening. •There is a growing interest in epigenetic modifications, and more specifically in histone post-translational modifications (hPTMs).•We describe an MS-based workflow that is capable of tracking all possible hPTMs in an untargeted approach that makes use of human cells.•Improving the workflow and the user-friendliness in order to become a high throughput, easily applicable, toxicological screening assay is an ongoing effort.

13.
Proteomics ; 20(3-4): e1900306, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31981311

RESUMO

Data-independent acquisition (DIA) generates comprehensive yet complex mass spectrometric data, which imposes the use of data-dependent acquisition (DDA) libraries for deep peptide-centric detection. Here, it is shown that DIA can be redeemed from this dependency by combining predicted fragment intensities and retention times with narrow window DIA. This eliminates variation in library building and omits stochastic sampling, finally making the DIA workflow fully deterministic. Especially for clinical proteomics, this has the potential to facilitate inter-laboratory comparison.


Assuntos
Cromatografia Líquida/métodos , Mineração de Dados/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Biologia Computacional/métodos , Bases de Dados de Proteínas , Células HeLa , Humanos , Biblioteca de Peptídeos , Software
14.
J Proteome Res ; 18(11): 3840-3849, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31429292

RESUMO

Mass spectrometry (MS) has become the technique of choice for large-scale analysis of histone post-translational modifications (hPTMs) and their combinatorial patterns, especially in untargeted settings where novel discovery-driven hypotheses are being generated. However, MS-based histone analysis requires a distinct sample preparation, acquisition, and data analysis workflow when compared to traditional MS-based approaches. To this end, sequential window acquisition of all theoretical fragment ion spectra (SWATH) has great potential, as it allows for untargeted accurate identification and quantification of hPTMs. Here, we present a complete SWATH workflow specifically adapted for the untargeted study of histones (hSWATH). We assess its validity on a technical dataset of time-lapse deacetylation of a commercial histone extract using HDAC1, which contains a ground truth, i.e., acetylated substrate peptides reduce in intensity. We successfully apply this workflow in a biological setting and subsequently investigate the differential response to HDAC inhibition in different breast cancer cell lines.


Assuntos
Cromatografia Líquida/métodos , Histonas/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Acetilação/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Biblioteca de Peptídeos , Reprodutibilidade dos Testes
15.
EuPA Open Proteom ; 22-23: 4-7, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31890545

RESUMO

The 2019 European Bioinformatics Community (EuBIC) Winter School was held from January 15th to January 18th 2019 in Zakopane, Poland. This year's meeting was the third of its kind and gathered international researchers in the field of (computational) proteomics to discuss (mainly) challenges in proteomics quantification and data independent acquisition (DIA). Here, we present an overview of the scientific program of the 2019 EuBIC Winter School. Furthermore, we can already give a small outlook to the upcoming EuBIC 2020 Developer's Meeting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...